RBBR Model: A Prediction Model of Bank Health Level Based on Risk for Regional Development Banks (BPD) in Indonesia

Authors

  • Herizon Chaniago STIE Perbanas Surabaya
  • Harry Widyantoro STIE Perbanas Surabaya

DOI:

https://doi.org/10.14414/jebav.v20i1.1064

Keywords:

Business risk, GCG, Rentability, Capitalization, and Bank soundness

Abstract

The RBBR Model is a risk-based bank rating model. First of all, this study was conducted to find a model that can be used for predicting bank soundness and the level of bank health especially the Regional Development Banks (BPD) in Indonesia. Secondly, it tried to see the level of ability to moderate GCG variables on the relationship between bank business risk and bank soundness. Thirdly, it had to see the level of ability to mediate GCG variables on the relationship between bank profitability and bank soundness. This study used BPD in Indonesia as a population and all members of the population studied, thus it is a census study. The variables consist of business risk (liquidity risk, credit risk, market risk and operational risk), GCG score and earnings performance and capital performance as the independent variables and bank soundness as the dependent variable. The secondary data were collected by means of documentation method. Data analysis includes descriptive analysis and statistical analysis, to describe the results of research, and statistical analysis to answer the research problem. Statistical analysis PLS Warp and multiple linear regression analysis were used for analysis, and it was found that the model can be used to predict the health of BPD in Indonesia. Furthermore, GCG neither moderate the relationship between business risk and BPD health levels in Indonesia nor mediates the relationship between earnings performance and BPD health levels in Indonesia.

References

Altman, E.I., Robert G.H., dan P. Narayan, 1977, Zeta Analysis: A New Model to Identify Bankruptcy Risk of Corporations, Journal of Banking and Finance, 29-54.

Aryati dan Balafif, 2007. Analisa Faktor Yang Mempengaruhi Tingkat Kesehatan Bank Dengan Regresi Logit . Jurnal Winner vol 8 no 2. 111-125

Bank Indonesia, 2003. Peraturan Bank Indonesia (PBI) Nomor 5/8/PBI/2003 tanggal 19 Mei 2003, tentang Penerapan Manajemen Risiko Bagi Bank Umum, Jakarta, Bank Indonesia.

, 2006, Peraturan Bank Indonesia (PBI) Nomor 8/4/PBI/2006, tanggal 30 Januari 2006, tentang Pelaksanaan Good Corporate Governance (GCG) Bagi Bank Umum, Jakarta, Bank Indonesia.

, 2006. Peraturan Bank Indonesia (PBI) Nomor 8/14/PBI/2006 tanggal 5 Oktober 2006, tentang Perubahan atas PBI Nomor 8/4/PBI/2006, tentang Pelaksanaan Good Corporate Governance (GCG) Bagi Bank Umum, Jakarta, Bank Indonesia.

, 2009, Peraturan Bank Indonesia (PBI) No: 11/25/PBI/2009 tanggal 1 Juli 2009, tentang perubahan atas PBI Nomor 5/8/PBI/2003 tentang Penerapan Manajemen Risiko Bagi Bank Umum, Jakarta, Bank Indonesia.

, 2011, Peraturan Bank Indonesia (PBI) No: 13/1/PBI/2011 tanggal 5 Januari 2011, tentang Penilaian Tingkat Kesehatan Bank Umum, Jakarta, Bank Indonesia

Basel Committee on Banking Supervision, 1988, International Convergence Of Capital Measurement and Capital Standards, Basle, Basel Committee On Banking Supervision

, 1996, Overview Of The Amandement To The Capital Accord To Incorporate Market Risk, Basle, Basel Committee On Banking Supervision

, 2004, International Convergence Of Capital Measurement and Capital Standards, A Revised Framework, International Convergence Of Capital Measurement and Capital Standards, Arevised Framework, Basle, Basel Committee On Banking Supervision

, 2009, A global regulatory framework for more resilient banks and banking systems, Basle, Basel Committee On Banking Supervision.

Biro Riset Infobank, 2007-2014, Majalah Infobank, “Peringkat Kesehatan Bank-Bank di Indonesiaâ€. Edisi Juni 2007-2014, Jakarta, Biro Riset Infobank.

Cvilikas , 2010, The Structure of Decision for banking Risk Management’s Economic Efficiency Assessment. Journal of Economic and Management, Vol 15

Gilbert R.A., Andrew P.M., dan Mark D.V.,2002, Could a CAMELS Downgrade Model Improve Off-Siet Surveillance?, The Federal Reserve Bank of St.Louis.

Gunther and Moore, 2003, Early Warning Model in Real Time, Journal of Banking & Finance, 27 : 1979-2001

Imam Gozali. 2006, Analisis Multivariate Dengan Program SPSS. Semarang : Badan Penerbit Universitas Diponegoro.

Indira dan Mulyaman, 1998, Memprediksi Kondisi Perbankan Melalui Pendekatan Solvency Secara Dinamis, Buletin Ekonomi Moneter & Perbankan, 2 :169¬-184.

Kasmir, 2012. Manajemen Perbankan. Cetakan Kesesebelas. Jakarta : PT. Raja Grafindo Persada.

Cyree K.B., James W.W., dan Thomas P.B. Ken B., 2000, Determinants of Bank Growth Choice : Journal of Bank ing & Finance, 24 : 709-734

Lukman Dendawijaya. 2009, Manajemen Perbankan. Jakarta : Penerbit Ghalia Indonesia.

Martin D.,1977, Early Warning of Bank Failure, Journal of Banking and Finance, 1 : 249-276.

Martono, 2013, Bank dan Lembaga Keuangan Lain. Yogyakarta: Penerbit Ekonisia.

Meyer and Piefer, 1970, Prediction of Bank Failure, The Journal of Finance, 853-868.

Sekaran Uma, 2007, Research Methods For Business, Fourth Edition, New York, John Wiley & Sons.

Sigit Triandaru, Totok Budisantoso, 2008, Bank dan Lembaga Keuangan Lainnya, Edisi Empat, Salamba Empat, Jakarta.

Sinkey Joseph F.Jr., 1975, A Multivariate Statistical Analysis of The Characteris¬tics of Problem Banks, The Journal of Finance, XX : 21-36.

Sri Haryati dan Djoko Budi S, 2000, Analisis Kinerja Bank-Bank Beku Operasi, Takeover, Rekapitalisasi dan Bank Sehat Tahun 1992 -1998, Ventura, Volume 4 No, 2: 97-107.

Sri Haryati, 2005, Studi Tentang Model Prediksi Tingkat Kesehatan Bank Swasta Nasional Di Indonesia, Jurnal Ekonomi Bisnis dan Akuntansi Ventura, Volume 9 No. 3: 1-19.

Taswan, 2010, Manajemen Perbankan (Konsep, Teknik dan Aplikasi), Edisi Dua, UPP STIM YKPN Yogyakarta.

Veitzal Rivai, Syofyan Basir, Sarwono Sudarto, Arifiandy Permata Veithzal. 2013. “Commercial Bank Management†: Manajemen Perbankan Dari Teori ke Praktik. Jakarta : PT. Raja Grafindo Persada.

Wimboh Santoso, 2000, The Determinants of Banks in Indonesia (An empirical Study.,htp:www.bi.go.id/bank

Downloads

Published

2017-08-14

How to Cite

Chaniago, H., & Widyantoro, H. (2017). RBBR Model: A Prediction Model of Bank Health Level Based on Risk for Regional Development Banks (BPD) in Indonesia. Journal of Economics, Business, and Accountancy Ventura, 20(1), 47–60. https://doi.org/10.14414/jebav.v20i1.1064