Artificial Intelligence and Philosophy of Humanism in Auditor Perceptions
DOI:
https://doi.org/10.14414/jebav.v26i2.3491Keywords:
Artificial intelligence, Audit process, Humanism philosophy, Audit quality, Confucian approachAbstract
This study aims to interpret the humanistic thinking of Chinese philosopher Confucius on the activity of integrating Artificial Intelligence (AI) into the process of auditing financial statements. The qualitative-interpretive method was used for research purposes through in-depth interview techniques which were addressed to informants from audit firms that had used AI. The validity of the information was tested using triangulation of data sources from different audit firm informants. The main findings show that as humans who have cognitive, moral and ethical abilities, auditors can collaborate with AI without worrying that the existence of this profession will be completely replaced by AI. However, excessive integration and tend to rely on auditors should be aware of so that high-tech assisted audit objectives such as AI work in harmony without eliminating the auditor's humanism such as skepticism and professional judgment that AI does not have. Social and ethical issues are challenges in the use of AI and solutions will continue to be sought. Therefore, the auditor always maintains critical thinking, especially on the elements contained in AI technology, namely system predictability, dependability, reliability, robustness, understanding, explanation of intent, usability, and user familiarity with AI technology.
References
Ga Barclay, I., Taylor, H., Preece, A., Taylor, I., Verma, D., & de Mel, G. (2021). A framework for fostering transparency in shared artificial intelligence models by increasing visibility of contributions. Concurrency and Computation: Practice and Experience, 33(19), 1–14. https://doi.org/10.1002/cpe.6129
Benhadj, Y., Messaoudi, M. El, & Nfissi, A. (2019). Artificial intelligence in education: Integrating serious gaming into the language class classdojo technology for classroom behavioral management. IAES International Journal of Artificial Intelligence, 8(4), 382–390. https://doi.org/10.11591/ijai.v8.i4.pp382-390
Bisantz, A. M., & Seong, Y. (2000). Assessment of operator trust in and utilization of automated decision aids under different framing conditions. Proceedings of the XIVth Triennial Congress of the International Ergonomics Association and 44th Annual Meeting of the Human Factors and Ergonomics Association, “Ergonomics for the New Millennium,“ 28, 5–8. https://doi.org/10.1016/S0169-8141(01)00015-4
Carpenter, R., & McGregor, D. (2020). The implications, applications, and benefits of emerging technologies in audit. The Business and Management Review, 11(02), 36–44. https://doi.org/10.24052/bmr/v11nu02/art-05
Chen, H. J., Huang, S. Y., & Kuo, C. L. (2009). Using the artificial neural network to predict fraud litigation: Some empirical evidence from emerging markets. Expert Systems with Applications, 36(2 PART 1), 1478–1484. https://doi.org/10.1016/j.eswa.2007.11.030
Etheridge, H. L., Sriram, R. S., & Hsu, H. Y. K. (2000). A comparison of selected artificial neural networks that help auditors evaluate client financial viability. Decision Sciences, 31(2),531–550. https://doi.org/10.1111/j.1540-5915.2000.tb01633.x
Fadli, M. R. (2021). Hubungan Filsafat dengan Ilmu Pengetahuan dan Relevansinya Di Era Revolusi Industri 4.0 (Society 5.0). Jurnal Filsafat, 31(1), 130. https://doi.org/10.22146/jf.42521
Heriyanti, K. (2021). Humanisme dalam Ajaran Konfusianisme. Jurnal Filsafat Agama Hindu, 12(1), 56–66.
Huang, F., & Vasarhelyi, M. A. (2019). Applying robotic process automation (RPA) in auditing: A framework. International Journal of Accounting Information Systems, 35(xxxx), 100433. https://doi.org/10.1016/j.accinf.2019.100433
IFAC. (2007). Tone at the Top and Audit Quality - Transnational Auditors Committee. December. http://www.ifac.org.
Institut Akuntan Publik Indonesia (IAPI). (2021). Standar Audit 200 (Revisi 2021) Tujuan Keseluruhan Auditor Independen Dan Pelaksanaan Audit Berdasarkan Standar Audit. Standar Profesional Akuntan Publik, 200(Revisi), 1–36. https://iapi.or.id/standar-profesional-akuntan-publik/
Issa, H., Sun, T., & Vasarhelyi, M. A. (2016). Research ideas for artificial intelligence in auditing: The formalization of audit and workforce supplementation. Journal of Emerging Technologies in Accounting, 13(2), 1–20. https://doi.org/10.2308/jeta-10511
Kirkpatrick, K. (2016). Battling Algorithmic Bias. 1, 16–17. https://doi.org/10.1145/2983270
Lombardi, R. D. (2012). Using an Expert System to Debias Auditor Judgement: An Experimental Study. In Rutgers, ProQuest LLC (Vol. 0, Issue 0). The State University of New Jersey.
Lu, H., Li, Y., Chen, M., Kim, H., & Serikawa, S. (2018). Brain Intelligence: Go beyond Artificial Intelligence. Mobile Networks and Applications, 23(2), 368–375. https://doi.org/10.1007/s11036-017-0932-8
Meredith, K., Blake, J., Baxter, P., & Kerr, D. (2020). Drivers of and barriers to decision support technology use by financial report auditors. Decision Support Systems, 139(February), 113402. https://doi.org/10.1016/j.dss.2020.113402
Moffitt, K. C., Rozario, A. M., & Vasarhelyi, M. A. (2018). Robotic process automation for auditing. Journal of Emerging Technologies in Accounting, 15(1), 1–10. https://doi.org/10.2308/jeta-10589
Munoko, I., Brown-Liburd, H. L., & Vasarhelyi, M. (2020). The Ethical Implications of Using Artificial Intelligence in Auditing. Journal of Business Ethics, 167(2), 209–234. https://doi.org/10.1007/s10551-019-04407-1
Pabubung, M. R. (2021). Epistemologi Kecerdasan Buatan (Ai) Dan Pentingnya Ilmu Etika Dalam Pendidikan Interdisipliner. Jurnal Filsafat Indonesia, 4(2), 152. https://doi.org/10.23887/jfi.v4i2.34734
Parasuraman, R., & Manzey, D. H. (2010). Complacency and bias in human use of automation: An attentional integration. Human Factors, 52(3), 381–410. https://doi.org/10.1177/0018720810376055
Puthukulam, G., Ravikumar, A., Sharma, R. V. K., & Meesaala, K. M. (2021). Auditors’ perception on the impact of artificial intelligence on professional skepticism and judgment in Oman. Universal Journal of Accounting and Finance, 9(5), 1184–1190. https://doi.org/10.13189/ujaf.2021.090527
Raphael, J. 2015. (2015). How Artificial Intelligence Can Boost Audit Quality. https://www.cfo.com/accounting-tax/2015/06/artificial-intelligence-can-boost-audit-quality/
Samek, W., Wiegand, T., & Müller, K.-R. (2017). Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models. http://arxiv.org/abs/1708.08296
Satyawan, M. D., Triani, N. N. A., Yanthi, M. D., Siregar, C. S., Kusumaningsih, A., & Paino, H. (2021). Akselerasi Peran Teknologi Dalam Audit Saat Covid-19. Jurnal Akuntansi Multiparadigma, 12(1), 186–206.
Sereati, C. O., Sumari, A. D. W., Adiono, T., & Ahmad, A. S. (2020). Towards cognitive artificial intelligence device: An intelligent processor based on human thinking emulation. Telkomnika (Telecommunication Computing Electronics and Control), 18(3), 1475–1482. https://doi.org/10.12928/TELKOMNIKA.v18i3.14835
Sutikno, T., Facta, M., & Arab Markadeh, G. A. (2011). Editorial: Progress in artificial intelligence techniques: From brain to emotion. Telkomnika, 9(2), 201–202. https://doi.org/10.12928/telkomnika.v9i2.729
Wright, D. (2011). A framework for the ethical impact assessment of information technology. Ethics and Infor-mation Technology, 13(3), 199–226. https://doi.org/10.1007/s10676-010-9242